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Abstract
Data centers have accidentally fulfilled the microkernel
vision: they move critical operating system components
into user-space middleware. Consequentially, it is time
to move to a different view of the OS in the data center—
treating the node OS merely as a local enforcement agent
of global decisions made by user-space systems soft-
ware. Based on this observation, we present a novel
distributed OS design for treating the data center as a
“warehouse-scale computer”, and explain why this has
attractive benefits for common distributed applications.

1 Introduction
Large-scale data centers have become indispensable over
the last decade. While the 1990s still saw single main-
frames power many large-scale operations, economies
of scale and increased per-processor performance have
made “warehouse-scale computers” (WSCs) from com-
modity parts a popular choice in data center design. A
data center with 20,000 servers of 48 CPU cores each—
in other words, a million cores—is a plausible configu-
ration for a WSC today [44]. However, size is not the
only distinguishing factor: WSCs, unlike traditional data
centers, are operated by a single organization, use ho-
mogeneous hardware and “much of the application, mid-
dleware, and system software is built in-house” [5, 25].
Operating system design, however, has failed to keep up
with this trend: shifting from time-shared mainframes to
general-purpose desktop computing in the 1990s, it was
taken aback by the reversal of direction. Consequently,
modern WSCs run many instances of a commodity mi-
crocomputer OS linked together in an ad-hoc fashion by
user-space software [50].

At the same time, research into microkernel OS con-
struction has been an obsession dear to systems research,
mostly due to its architectural elegance [21]: touting
advantages such as a communication-centric design by
breaking the OS into independent user-space compo-
nents [2, 37], fast IPC [22, 34], extensibility via the

same mechanisms [9, 46], exposure of abstraction-less
low-level interfaces to user-space programs [17, 32], and
small trusted computing base and formal verifiability
[30, 47], microkernels were always the cool kids’ LEGO.
Unfortunately, they fail to be deployed in large-scale sys-
tems, with some arguing that they are inferior to the prag-
matic sandcastle of virtual machine monitors in prac-
tice [21].

Surprisingly though, microkernels conceptually have
come full circle in today’s WSCs: while microkernels
originally adopted a communication-centric design aim-
ing to reduce kernel complexity to allow flexible imple-
mentation of systems-level functionality in user-space,
WSCs have adopted a similar design for expedience
and convenience. Typical WSC infrastructure middle-
ware is a distributed system in user-space: file sys-
tems [18, 39, 45], structured storage [4, 13, 14], data
processing engines [15, 28], synchronization and lock-
ing services [11, 27], schedulers [29, 54] implement
functionality duplicating traditional OS services. In the
following, we describe how this surprising coincidence
came about (§2), discuss the implications for operating
systems on WSCs (§3), and present a clean-slate dis-
tributed OS design for this setting (§4-5). Finally, we
discuss its advantages and limitations, and related exist-
ing work (§6).

2 The accidental microkernel
While actual microkernels have enjoyed some popular-
ity in the embedded systems community due to their
small resource footprint [23], they were never (to our
knowledge) considered for data centers. Why is it that,
nonetheless, WSC operators have adopted a de facto mi-
crokernel way of running their systems?

We believe that there are two main reasons: pragmat-
ically, the need for rapid evolution and, architecturally,
the fact that WSC applications are distributed by default
to attain scalability and resilience unavailable on a single
machine.
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Rapid evolution. WSC infrastructure—due to a busi-
ness need for systems to scale to millions of users—has
had to evolve rapidly over the last decade. For example,
Google has deployed five major storage systems over the
last eight years: GFS [18] and its successor Colossus,
MegaStore [4], BigTable [13] and Spanner [14]. This
pace of innovation is well beyond even the most opti-
mistic development cycles for OS features. In fact, it
may only be feasible as a result of an active choice to
forgo OS integration inspite of its potential performance
benefits: user-space software development and debug-
ging is easier, cheaper and can make use of a breadth
of existing libraries, unlike an in-kernel implementation.

Distributed operation. Large scale computation is
most cost-effective when fault tolerance features are im-
plemented in software [6]. WSCs are constructed from
inexpensive commodity hardware and simple Ethernet
interconnects. Fault tolerant software running on such
a platform necessarily takes the form of a message-based
distributed system. Commodity OSes do not embrace
distribution, as popular variants have their roots in the
age of time-shared SMP machines, and even recent OS
research efforts stop at the chassis boundary [7]. Fully
distributed OSes, on the other hand, have fallen out of
fashion after attempts to join networks of workstations
into a single computing environment [31, 37, 40] failed
to take off.

Custom distributed OSes are used on some high-
performance computing (HPC) systems [20], but these
are tailored to very specific problem domains orthogonal
to the WSC use case. Specifically, such approaches fo-
cus on homogenous, compute-heavy, usually numerical
workloads. WSC workloads are far more diverse: they
include latency-sensitive user-facing operations as well
as long-running data processing tasks. As HPC OSes
emphasize reducing jitter and OS impact on synchro-
nized processes, they do not support co-scheduling het-
erogeneous workloads [3]. Hence, WSC operators were
left with no choice but to use commodity OSes. These,
however, have traditionally shied away from moving es-
sential OS components, such as file systems or sched-
ulers, to user-space in order to efficiently support inter-
active desktop computing. Since distributed versions of
such components are required, WSC operations reimple-
ment them in user-space. They only use the kernel to ef-
fect network and block storage I/O, to bootstrap the node
and to partition it into resource allocations, as well as to
maintain isolation between the systems running in user-
space. Data is managed and policy decisions are made by
distributed infrastructure in user-space. This exactly ful-
fills the original microkernel vision: the kernel only pro-
vides minimal fundamentals, while the majority of OS
functionality is implemented in user-space.

3 Implications
The incentives of commodity, general-purpose OSes and
of WSCs are not well aligned: while the former must
support a variety of use cases in general-purpose com-
puting and are reluctant to specialize, WSCs benefit from
specialization. Indeed, WSC operators are known to op-
timize at microscopic levels in order to harness potential
for savings at scale—both in hardware [1] and in soft-
ware [36], and at significant expense.

It is thus conceivable—and indeed known prac-
tice [50]—for WSC operators to heavily modify the com-
modity OS they run. While pragmatic in the short term,
and admittedly beneficial in running a platform compat-
ible with the “outside world”, we believe that this ap-
proach misses a number of crucial opportunities, while
being hampered by redundant baggage.

Awkward fit of domain abstractions. WSCs run a
very particular breed of applications, coming with their
own abstractions from the distributed systems world: for
example, task-parallel data-flow programming is com-
mon [38], and message-based algorithms for replication
and consensus abound [12]. Mapping these abstractions
onto classic OS primitives such as shared-memory syn-
chronization or sockets is often far from straightforward.
Furthermore, the existing abstractions for remote com-
munication are designed for a pessimal general-purpose
case, rather than the tight, low latency interconnect of
a WSC: for example, the socket interface necessitates a
data copy, based on the assumption that copying memory
is a much cheaper operation than network communica-
tion. An OS designed to fit the distributed computing
bill of WSCs’ particular niche could do better here—
improving performance and reducing both complexity
and development effort.

Static local/remote boundary. The abstractions used
for effecting local and remote actions (most importantly,
inter-process communication and I/O) are separate in
modern commodity OSes: replacing a shared memory
connection with sockets (or vice versa) is a significant
refactoring effort. However, as the number of cores
in a machine scales and WSCs grow in size, the opti-
mal decomposition into local and remote actions is non-
obvious, and may change frequently. Unifying these
abstractions is an opportunity that WSC software could
greatly benefit from, but which is unlikely to be met with
much enthusiasm in commodity OSes.

Unused code and complexity. Running a commodity
OS, such as Linux, but using it in a microkernel fashion
as described above necessarily ends up utilizing only a
fraction of the considerable code base. Is that necessarily
an issue? Not per se, but unused code introduces com-
plexity, which makes the system harder to understand
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and evolve. Complete tracing of a distributed job run-
ning on a WSC is a hard problem [10, 41], in part due
to additional complexity being introduced by an already
complex OS underneath the distributed infrastructure.

Cost of maintaining specializations. Despite the ben-
efits that being “hooked in” with a commodity OS’s de-
velopment process brings, it is also a burden: customiza-
tions must be adapted to suit upstream changes, and this
constitutes a significant effort. Google, for example, in
2009 were maintaining 1,280 proprietary patches adding
~300,000 lines to the Linux kernel [50]. Due to the in-
centive misalignment, upstream changes that benefit e.g.
interactive desktop computing are often detrimental to
the performance of WSC applications: Google found
the CFS scheduler in the 2.6 kernel to be unhelpful, and
forward-ported an old 2.4-era scheduler [50].

4 Requirements
What if, instead of using a commodity OS, a WSC op-
erator invested the same resources into development of a
custom, special-purpose OS? This approach worked for
physical infrastructure1 and we believe there is value in
considering what a clean-slate OS redesign for a WSC
might look like. But what are the precise requirements
that such an OS must meet?

Infrastructure “middleware”. Consider the typical
WSC use case: infrastructure systems—such as MapRe-
duce [15], BigTable [13] or a cluster scheduler like
Quincy [29]—serve higher-level applications, typically
called jobs, which are composed of many parallel tasks.
The infrastructure systems run as long-running tasks and
are akin to privileged user-space servers, such as an ex-
ternal pager, in a traditional microkernel: they are trusted
to access all data in the system, and their correct oper-
ation is necessary for the system to work and to make
progress. Typically, they are implemented by the most
expert programmers, and changes are vetted thoroughly.

User jobs. Jobs running on top of this infrastruc-
ture software are data analytics work for business logic
or serving work for user-facing front ends. Usually,
they will link against a client library that facilitates
communication with the infrastructure middleware via
system-specific APIs. Their tasks are typically sched-
uled centrally, based on multi-dimensional resource re-
quirements [19]. The data they deal with—for example,
users’ emails, map tile images for a mapping application,
pages in a search index, or nodes and edges in a social
graph—are numerous, and replicated for availability and
resilience.

I/O, partitioning and fault-tolerance. The OS-level
requirements of such data-intensive workloads are first

1E.g., in OpenCompute: http://opencompute.org
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Figure 1: Three untrusted tasks using MapReduce, GFS,
BigTable and a cluster scheduler running atop DIOS.

and foremost high performance disk and network I/O
(since they are commonly I/O-bound), but also the sup-
port for a variety of consistency levels in I/O, currently
usually implemented in the infrastructure systems. Since
the WSC is a shared system, it is recursively partitioned
into resource shares: between organizational units, in-
dividual users, jobs and eventually tasks, which must
also be accounted for [16]. The composition of many
nodes built from commodity hardware also necessitates
strong tolerance towards individual components’ fail-
ures, which occur frequently at the scale of a WSC, and
fast, reliable messaging between the nodes.

5 A distributed WSC OS design
We have argued in §3 that the status quo of commodity
OSes being used as de facto microkernels is unsatisfac-
tory. We now state the principles for our DIOS design,
and sketch a possible syscall API (Table 1).

Fundamentally, an operating system is concerned with
(i) locating targets for I/O, (ii) allocating required re-
sources and scheduling computation, and (iii) effecting
I/O. This is reflected in the DIOS design, although we al-
low all higher-level policy decisions to be made by user-
space software. The primitives supplied by the OS ker-
nel, however, embrace distributed operation.

While functionally equivalent to a microkernel (Fig.
1), DIOS, unlike classic microkernels, implements a net-
work stack and a block storage driver, as well as a dis-
tributed name service, in the kernel. Like a classic mi-
crokernel, DIOS has privileged trusted and unprivileged
untrusted user-space applications.

Global names and local references. Naming is a key
problem in distributed systems (as well as in classic
OSes), and we support it using two primitives in DIOS:
every object (an unstructured set of bytes, a running task,
or a device) is named by a globally unique and valid iden-
tifier, its name (N ). Global name resolution to reachable
objects is only available to infrastructure tasks running
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Syscall Function

〈P,size〉 begin read(Ro) Informs kernel of read on object referenced by Ro; returns read buffer pointer P .
bool end read(Ro) Checks consistency of completed read on Ro; returns validity indication.

P begin write(Ro, size) Informs kernel of write of size on Ro or upgrades to write; returns pointer P .
bool end write(Ro) Checks consistency of completed write on Ro; returns validity indication.

Rt run(Ro) †Runs object referenced by Ro; returns reference to running task.
〈R0

o,...,Rn
o〉 lookup(N) †Attempts to find all reachable instances of the object named by N .

bool pause(Rt) Pauses the running task referenced by Rt ; returns success indication.
〈N, Ro〉 create() Creates a new object and returns a name N for and reference Ro to it.

bool copy(〈R0
o,...,Rn

o〉, Rt) Copies references Ri
o into the environment of task t referenced by Rt .

bool delete(Ro) Removes the object instance referenced by Ro.
Ri

o select(〈R0
o,...,Rn

o〉) Returns the first readable reference Ri
o out of the n references in 〈R0

o,. . . ,Rn
o〉.

Table 1: DIOS syscall API; all syscalls additionally take a set of flags F . †trusted infrastructure tasks only.

in trusted mode. In order to describe objects throughout
the system, locally scoped references (R) are used. As
objects may be replicated at various points in the WSC,
multiple references can refer to different instances of the
same object. The node kernel mints references as part
of name lookup or name creation. The former inter-
rogates the global naming service, while the latter pro-
duces a newly generated, unshared name and reference.
The reference is stored in a task-specific reference table
and carries context information that only makes sense in
the local environment. For example, it may hold infor-
mation on whether the target is local or remote (expos-
ing its access cost), specify the the maximum write size
(buffer size), or specify information on whether an ob-
ject instance is in persistent memory. References can be
explicitly shared between tasks by invoking the copy
operation, which will store them in the target task’s ref-
erence table and adapt them to its environment.

Syscall API. Table 1 shows a straw-man syscall API
for the DIOS design, which we refer to for illustration in
the following. Note that all syscalls take a set of flags, F ,
in addition to the parameters specified. These flags spec-
ify expectations on behavior: for example, flags to the
I/O syscalls determine whether the object should be ac-
cessed under a weak or strong consistency regime, while
flags to copy can be used to restrict (but not widen) ac-
cess to a reference. In addition, all syscalls are blocking.

Tasks are provided with an initial set of references
at startup. These may be references to data (e.g. argu-
ments), resources such as an OS timer, IPC endpoints, or
IRQ registration points. Asynchronous abstractions are
implemented using select and a timer reference.

Only trusted tasks can invoke run, since it has the
ability to start a task anywhere in the WSC (resources
permitting). In practice, it is largely a single trusted task
that makes use of the task running facility: the user-space
scheduler. Untrusted jobs may spawn additional tasks by
communicating with this scheduler using its API; it is the
scheduler who then decides on the resources and invokes

run. The scheduler is bootstrapped by checking at node
bootup if any scheduler task is running in the WSC; if
not, the node starts a scheduler task.

Recursive abstractions. In operating systems, it is of-
ten handy to allow the same mechanisms to be used at
different scales. This is particularly pertinent in a WSC,
where dynamic partitioning of resources into adminis-
trative, job and task domains is necessary. Indeed, such
ideas are commonly found in mainframe literature—for
example, the Cambridge CAP Computer [51] had a re-
cursive process abstraction, Popek and Goldberg [42]
defined the requirements for recursive virtualization in
1974, and in the VM/370 architecture, levels of nested
virtual machines up to five deep were reported [48].

A recent resurgence of interest in library OSes [35, 43]
testifies to the timeliness of this observation: Draw-
bridge, for example, defines a deliberately narrow ABI
of 36 calls to ease resource virtualization towards the li-
brary OS [43]. Similarly, by providing a simple, eas-
ily virtualizable, set of kernel interfaces, we make it
easy for users of the system to easily create partitions of
an arbitrary granularity. Interposing the trusted syscalls
(lookup, run) using a dynamically-linked library that
forwards them to an IPC endpoint allows us to nest DIOS
instances arbitrarily, supporting this goal.

Unified I/O and communication. DIOS is explicitly
designed to use zero-copy unified primitives for commu-
nication and persistent I/O. Typically, the application ob-
tains a reference by either creating an object, by looking
up a name, or by being supplied via copy. If the ob-
ject is another task, I/O to the reference results in IPC
(local or over the WSC interconnect); if it is stored data
(in a local shared-memory area, remote memory, or on
disk), I/O results in access to said data with the speci-
fied consistency regime. Unlike previous distributed OS
designs [24], in which every memory access could po-
tentially refer to a remote location, and thus have a high
cost and latency, in DIOS, explicit primitives need only
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be invoked for access to shared data (references that have
been passed by copy) or other objects, though—an ap-
plication may use its own virtual memory in whatever
way it pleases.

As we trust the infrastructure tasks, and because kernel
crossings are a major source of overhead on I/O syscalls
which get invoked frequently in typical data-intensive
applications,2 such tasks may perform I/O to their ref-
erences entirely in userspace.

The previously described concept of references ad-
dresses the typical problem of distributed microkernels
with unified I/O primitives: that in hiding whether com-
munication is local or remote, they make it impossible to
reason about the performance or reliability of seemingly
simple code. With references, we make it easy to write
code that can determine whether an action is remote or
local and can recover in the non-local case.

6 Discussion
Security. Due to the sensitive nature of data processed
on WSCs, it is paramount that DIOS is able to prevent
accidental data disclosure to the furthest possible extent.
The security model we described is two-fold: access to
name resolution is limited to trusted infrastructure tasks,
and references can be passed and restricted like capabil-
ities. This model is conceptually equivalent to the one
realized by Capsicum [49] for BSD, and sufficiently ex-
pressive to allow user-space infrastructure to enforce its
own authentication and access control abstractions for
untrusted jobs. Trusting the infrastructure software is not
a problem—it is the status quo in today’s WSCs.

Benefits. The distributed OS design described has sev-
eral benefits over current solutions: as user-space mid-
dleware dictates OS policy (e.g. in scheduling), conflict-
ing goals between distributed infrastructure and node OS
can be avoided. A key example of this is the lack of in-
teraction between local OS schedulers and cluster sched-
ulers in current setups—bridging this gap might enable
more efficient operation. Furthermore, due to its sim-
plicity and small size, DIOS is likely to be easy to main-
tain, extend and customize. The reference abstraction is
handy in distributed systems construction, and as a side-
effect provides OS-level information flow data useful for
tracing, debugging and provable compliance.

Limitations. DIOS does not support userspace multi-
threading, and instead uses task based parallelism with
explicit memory sharing. This is intentional: it is central
to our design philosophy that no two control flows com-
municate without explicit use of the I/O primitives. This
facilitates flexible task decomposition into local and re-

2We found that 35-50% of Linux syscalls made by typical WSC ap-
plications such as Hadoop MapReduce, Redis or ZooKeeper are read
or write.

mote parts, benefiting migration and simplifying debug-
ging and traceability. Furthermore, interactive desktop
computing paradigms, such as interactive shells, are a
poor fit for DIOS. While feasible under the API, these
would be cumbersome and of little practical value in a
WSC.

Messaging performance. Remote operations in DIOS
frequently necessitate messages to be sent to another
node. As with traditional distributed microkernels [33],
extending messaging beyond a single machine requires
strong latency and reliability guarantees in order to be
efficient. We thus make the assumption that message
delivery inside a WSC interconnect is fast—which is
reasonable in the tightly coupled environment of a data
center—and assume that, while we cannot guarantee reli-
ability, delivery failures can be detected. This can either
be achieved by aggressive timeouts (trading additional
failures for performance), or by support in the intercon-
nect.3

Rollout. DIOS can be deployed incrementally: while
some machines in the WSC continue to run a commod-
ity OS, DIOS is deployed to others. Infrastructure sys-
tems can then migrate separately—since their API with
the user jobs does not need to change, the rollout can
be transparent to most programmers. Interoperability
between systems at different stages of being ported to
DIOS can be provided by a shim library implementing
the DIOS API deployed on top of a commodity OS.

Related work. The utility of distributed systems
primitives for building scalable operating systems
for multi-core machines has been noted [8, 26], and
led to the conception of the OS as communicating
multi-kernels [7]. This work is complementary to ours:
DIOS could well be realized using per-core multi-kernel
instances. Indeed, others have previously noted that
“the data center needs an operating system” [53], but
stopped short of replacing the commodity node OS.
Most directly related to our ideas are Amoeba [37]
and Hydra [33], both distributed microkernel OSes.
However, our design is not as purist: to specialize DIOS
to the WSC environment, we include network and disk
I/O in the kernel, and do not mandate strict use of
capabilities (references) inside the kernel.

Micro-kernels are the original sin of OS research, and
we have been tempted too: we are currently working on
D¢OS, an implementation of the DIOS concept.

3Switch support is conceivable [52]; however, in related but sep-
arate work, we are building a novel switchless, bufferless data center
interconnect with this property.
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